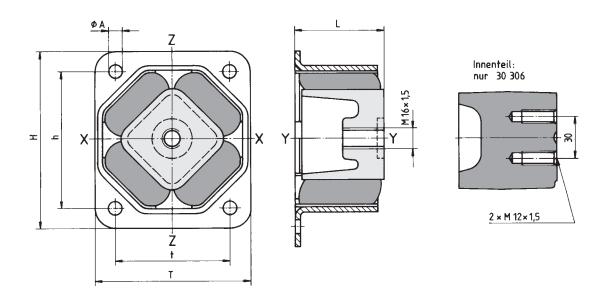
X-Lager im Guss- und geschweißten Gehäuse



X-Lager als Verteiler-Getriebelager im Fahrzeug eingebaut

### X-Lager


Die doppelkeilförmigen elastischen Lager der Artikelreihe 30 wurden für die elastische, schwingungsisolierende Aufhängung nicht angeflanschter Fahrzeuggetriebe entwickelt. Die Gummipakete sind so angeordnet, dass sie überwiegend auf Druck und Schub beansprucht werden. Infolge des hohen Druckanteils verläuft die anfangs gradlinige Federkennlinie bei hoher Belastung progressiv. In Rotationsrichtung sind sie sehr steif.

Die Höhe der Gummipakete ist an allen Orten gleich. Dies führt zu einer gleichmäßigen Spannungsverteilung und zu einer guten Ausnutzung des Gummikörpers.

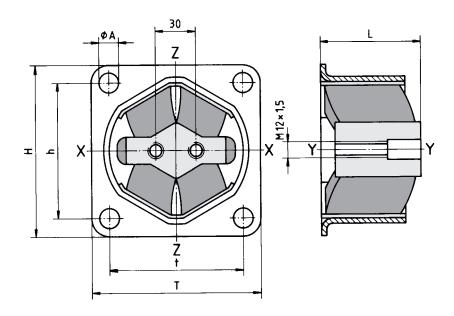
Es können daher außerordentlich hohe Überlastungen ohne Zerstörung aufgenommen werden. Das Vulkanisierteil ist unter Vorspannung in einen Gehäuserahmen eingedrückt, der mittels stirnseitiger Flansche oder horizontaler Anschlussplatten am Fahrzeugrahmen befestigt ist. Das gleiche Vulkanisierteil kann für Gehäuse mit verschiedenen Anschlussmaßen oder Anschlussausführungen Verwendung finden. Hauptabmessungen, zulässige Belastungen und elastische Werte sind in den Tabellen und Diagrammen zusammengestellt Im Gegensatz etwa zu unseren OX-Lagern der Artikelreihe 33 können sie ohne weitere Orientierung sicher montiert werden.

Die X-Lager sind auch zur Lagerung von Motoren, Aggregaten und Aufbauten geeignet. Sie bieten eine ausgezeichnete Schwingungs- und Geräuschisolation. Unter Verwendung hochelastischer Spezialmischungen ist das X-Lager auch in gekapselten Getrieberäumen mit höherer thermischer Beanspruchung einsetzbar. Bei Verwendung der X-Lager beraten wir Sie sehr gerne zu dem Schwingungsverhalten Ihrer Anwendung.

### Typ A



Die Angaben in den Tabellen sollen Ihnen bei der Vorauslegung Ihrer Anwendung helfen. Sie basieren auf realen Teilen. Im Detail sind Anpassungen erforderlich. Die Teile können so nicht bestellt werden. Wir optimieren gerne für Sie.


|     | Тур А    |                  |                  | Abmes<br>[m      | sungen<br>m]     |         |    | Spitzenbe-<br>lastung<br>[kN] | Federkons<br>[N/mr  |                  |
|-----|----------|------------------|------------------|------------------|------------------|---------|----|-------------------------------|---------------------|------------------|
| Ī   | Variante | H <sup>(1)</sup> | h <sup>(1)</sup> | T <sup>(1)</sup> | t <sup>(1)</sup> | Ø A (1) | L  | $F_{x-x} = F_{z-z}$           | $C_{X-X} = C_{Z-Z}$ | C <sub>y-y</sub> |
|     | 30 301   | 110              | 85               | 130              | 100              | 11      | 65 | 20                            | 2500                | 500              |
|     | 30 302   | 126              | 100              | 126              | 100              | 15      | 66 | 25                            | 3000                | 500              |
| (2) | 30 035   | 126              | 100              | 126              | 100              | 15      | 82 | 25                            | 4400                | 500              |
|     | 30 303   | 145              | 90               | 146              | 116              | M 12    | 76 | 25                            | 3500                | 500              |
|     | 30 304   | 110              | 85               | 130              | 100              | 11      | 72 | 25                            | 4200                | 500              |
| Ī   | 30 306   | 110              | 72               | 138              | 110              | 11      | 82 | 15                            | 6000                | 660              |
| (2) | 30 1001  | 210              | 180              | 185              | 160              | M 16    | 77 | 25                            | 4500                | 1200             |
| (3) | 30 1003  | 170              | 130              | 140              | 100              | 17      | 70 | 32 (4)                        | 2300 (4)            | 1200             |

- (1) Die Anschlussmaße H, h, T, t und Ø A können anderen Einbauverhältnissen angepasst werden.
- (2) mit Anschlag in axialer Richtung.
- (3) mit Pratzenanschluss.
- (4) Werte gültig für  $F_{z-z}$  und  $c_{z-z}$

Die technischen Daten sind nur Richtwerte.

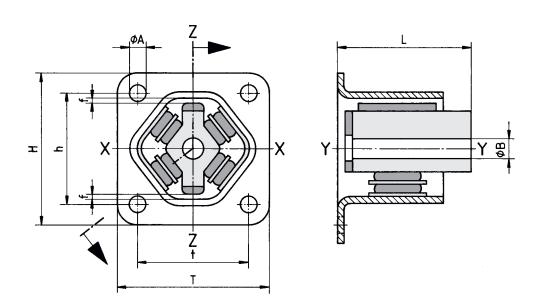
Die Liste wird laufend erweitert.

Тур В



| Тур В    |                  |                  | Abmes<br>[m      | Federkonstanten<br>[N/mm]       |                  |                  |
|----------|------------------|------------------|------------------|---------------------------------|------------------|------------------|
| Variante | H <sup>(1)</sup> | h <sup>(1)</sup> | T <sup>(1)</sup> | C <sub>x-x</sub> <sup>(2)</sup> | C <sub>y-y</sub> | C <sub>Z-Z</sub> |
| 33 7502  | 126              | 100              | 126              | 520                             | 300              | 2980             |

- (1) Die Anschlussmaße H, h, T, t, und  $\varnothing$  A können anderen Einbauverhältnissen angepasst werden.
- (2) Federkonstante ohne Anschläge.
  Die technischen Daten sind nur Richtwerte.
  Die Liste wird laufend erweitert.


7

## Typ C

#### X-Lager

mit axialem Anschlag





Die Angaben in den Tabellen sollen Ihnen bei der Vorauslegung Ihrer Anwendung helfen. Sie basieren auf realen Teilen. Im Detail sind Anpassungen erforderlich. Die Teile können so nicht bestellt werden. Wir optimieren gerne für Sie.

|     | Тур С    |                  |                  | А     | Federkonstanten<br>[N/mm] |                    |      |                  |                  |                  |                                 |
|-----|----------|------------------|------------------|-------|---------------------------|--------------------|------|------------------|------------------|------------------|---------------------------------|
|     | Variante | H <sup>(1)</sup> | h <sup>(1)</sup> | T (1) | t <sup>(1)</sup>          | Ø A <sup>(1)</sup> | Ø B  | f <sup>(2)</sup> | C <sub>X-X</sub> | C <sub>y-y</sub> | C <sub>z-z</sub> <sup>(3)</sup> |
| (4) | 33 8506  | 80               | 50               | 150   | 2200                      | 100                | 1300 |                  |                  |                  |                                 |

- (1) Die Anschlussmaße H, h, T, t, und  $\varnothing$  A können anderen Einbauverhältnissen angepasst werden.
- (2) Mittelwert.
- (3) Federkonstante ohne Anschläge.
- (4) mit Anschlag in axialer Richtung.
  Die technischen Daten sind nur Richtwerte.
  Die Liste wird laufend erweitert.







### **O-Lager**

O-Lager werden in einen runden Einbauraum eingepresst. Sie bestehen im Wesentlichen aus einem Innenteil, den anvulkanisierten Gummipaketen und zwei an die Gummipakte anvulkanisierten Halbschalen als Außenteil. Die Halbschalen liegen im Herstellzustand nicht aneinander an. Bei der Montage werden sie dann gegeneinander verspannt und spannen so die Gummipakete vor.

Senkrecht zur Vorspannrichtung sind am Innenteil zwei einander gegenüberliegende Anschläge aufvulkanisiert, die je nach Beanspruchung unterschiedlich dimensioniert sein können.

Die Gummipakete sind überwiegend auf Schub und Biegung belastet.

Zur Montage wird das O-Lager axial in den Einbauraum gepresst und hierbei im Gummi eine Druckvorspannung aufgebracht. Die Gestaltung des Einbaugehäuses ist vom eigentlichen elastischen Element unabhängig und kann daher den Platzverhältnissen und den Anschlussmöglichkeiten weitgehend angepasst werden.

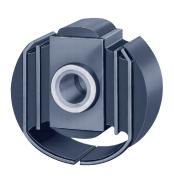
Das zu lagernde Bauteil wird am Innenteil befestigt, wobei dieses mit Bohrung, Konus oder Zapfenanschluss ausgeführt sein kann. Unter der statischen Belastung federt das Innenteil ein, so dass sich freie Federwege an den Anschlägen, je nach Konstruktion, mit unterschiedlichen oder gleichen Wegen am oberen und/oder unteren Anschlag ergeben. Der Verlauf der Federkennlinie ist von der Gestaltung der Anschläge und der Kontur der Gummipakete abhängig.

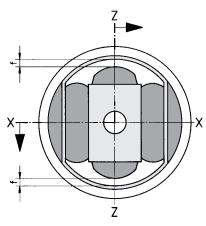
Bei großen axialen Kräften können die Bewegungen durch einen zusätzlichen Anschlag begrenzt werden. Axiale Sicherungen können je nach Anwendung und Ausführung vorgesehen werden.

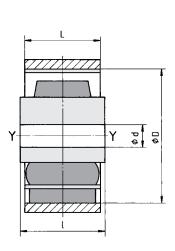
Die O-Lager wurden vor allem für die elastische Lagerung von leichteren stationären Motoren, Fahrzeugmotoren und Aggregaten entwickelt und können in vielen weiteren Einsatzgebieten verwendet werden, wie z.B. als Strebenlagerung.

Je nach Bedarfsfall bzw. Aufgabenstellung kann die Ausführung O-Lager, OH-Lager, OV-Lager oder OX-Lager gewählt werden.

Typ A:
O-Lager
Grundmodell


| Тур А    |      | A   | bmessunge<br>[mm] | en   |                  | F                | ederkonstante<br>[N/mm] | en                   |
|----------|------|-----|-------------------|------|------------------|------------------|-------------------------|----------------------|
| Variante | Ø D  | Ø d | L                 | I    | f <sup>(1)</sup> | C <sub>X-X</sub> | C <sub>y-y</sub>        | C <sub>z-z</sub> (2) |
| 33 345   | 43   | 16  | 40                | 40   | 1,5              | -                | -                       | 800                  |
| 33 054   | 43   | 18  | 40                | 45   | 1,5              | 9400             | 300                     | 1000                 |
| 33 024   | 52   | 12  | 26                | 38   | 2                | 2270             | -                       | 375                  |
| 33 1022  | 52   | 30  | 56                | 66   | 2                | 1600             | 250                     | 160                  |
| 33 3500  | 60   | 17  | 64                | 80   | 3                | 280              | 170                     | 2460                 |
| 33 1018  | 72   | 16  | 50                | 60   | 7                | 200              | 200                     | 1600                 |
| 33 315   | 80   | 22  | 25                | 45   | 5                | 770              | -                       | 63                   |
| 33 5504  | 87,2 | 50  | 58                | 65,5 | 1                | 2666             | 1333                    | 250                  |
| 33 2002  | 88   | 35  | 100               | 250  | 2                | -                | 1250                    | 35000                |
| 33 3000  | 90   | -   | 86                | 285  | 5                | 54550            | 1200                    | 1760                 |
| 33 003   | 90   | 17  | 69                | 69   | 6                | 2750             | 275                     | 333                  |
| 33 002   | 90   | 17  | 45                | 53   | 4                | 950              | 100                     | 230                  |
| 33 2001  | 100  | 17  | 49                | 55   | 5                | -                | 135                     | 345                  |
| 33 006   | 105  | 30  | 80                | 80   | 7                | -                | 180                     | 190                  |
| 33 018   | 105  | 30  | 36                | 39   | 7                | -                | -                       | 187                  |
| 33 3008  | 127  | 71  | 88                | 88   | 23               | 333000           | 800                     | 11000                |
| 33 2500  | 190  | 105 | 90                | 90   | -                | 20000            | 2500                    | 8400                 |
| 33 3007  | 240  | 80  | 60                | 68   | 9                | 4940             | 280                     | 7000                 |


<sup>(1)</sup> Mittelwert.


<sup>(2)</sup> Federkonstante ohne Anschläge.
Die technischen Daten sind nur Richtwerte.
Die Liste wird laufend erweitert.

Typ B:

OH-Lager
zweischichtig

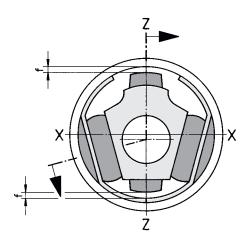


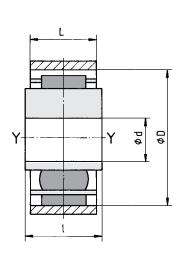




| Тур В    |     | Abn             | nessungen<br>[mm] | 1/  | Federkonstanten<br>[N/mm] |                  |                                 |      |
|----------|-----|-----------------|-------------------|-----|---------------------------|------------------|---------------------------------|------|
| Variante | Ø D | $\varnothing$ d | L                 | I   | C <sub>X-X</sub>          | C <sub>y-y</sub> | C <sub>z-z</sub> <sup>(2)</sup> |      |
| 33 052   | 56  | 25              | 30                | 57  | 2                         | 9000             | 286                             | 570  |
| 32 020   | 71  | 12              | 40                | 40  | 4                         | 800              | 224                             | 244  |
| 33 4001  | 72  | 16              | 56                | 66  | -                         | -                | -                               | -    |
| 32 009   | 80  | 22              | 28                | 45  | 9                         | 1280             | 74                              | 74   |
| 32 7000  | 100 | 30              | 45                | 85  | 7                         | 4000             | 4000                            | 364  |
| 32 012   | 105 | 28              | 50                | 78  | 9                         | 6250             | 78                              | 178  |
| 32 021   | 125 | -               | 105               | 285 | 5                         | 4570             | 110                             | 110  |
| 32 014   | 130 | M24 x 1,5       | 75                | 85  | -                         | 38460            | 1350                            | 3175 |

<sup>(1)</sup> Mittelwert.


<sup>(2)</sup> Federkonstante ohne Anschläge.
Die technischen Daten sind nur Richtwerte.
Die Liste wird laufend erweitert.

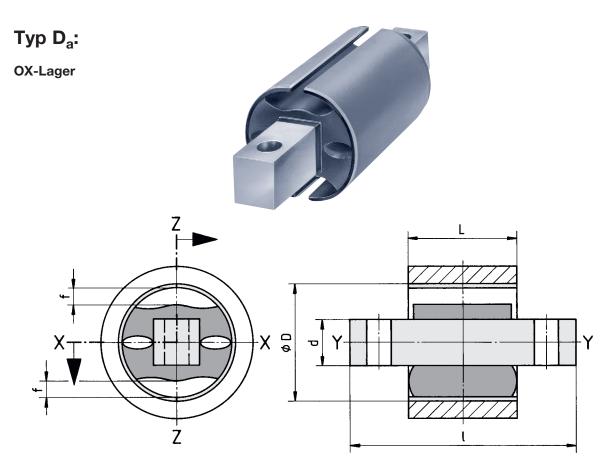

Typ C:

# **OV-Lager** als Fahrerhauslager

als Fahrerhauslager mit axialem Anschlag








Die Angaben in den Tabellen sollen Ihnen bei der Vorauslegung Ihrer Anwendung helfen. Sie basieren auf realen Teilen. Im Detail sind Anpassungen erforderlich. Die Teile können so nicht bestellt werden. Wir optimieren geme für Sie.

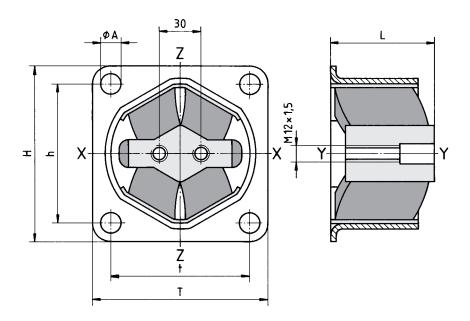
|     | Тур С    |     | Al            | omessunge<br>[mm] | en  |                  | Federkonstanten<br>[N/mm] |                                 |      |  |
|-----|----------|-----|---------------|-------------------|-----|------------------|---------------------------|---------------------------------|------|--|
|     | Variante | Ø D | $\emptyset$ d | L                 | 1   | C <sub>X-X</sub> | C <sub>y-y</sub>          | C <sub>z-z</sub> <sup>(2)</sup> |      |  |
|     | 33 050   | 62  | 22            | 26                | 30  | 2                | -                         | -                               | -    |  |
|     | 33 063   | 66  | 25            | 47                | 63  | 1                | 70000                     | 400                             | 1600 |  |
|     | 32 7004  | 80  | 16            | 65                | 85  | 6                | -                         | -                               | -    |  |
|     | 32 5003  | 80  | 16            | 65                | 85  | 7                | 980                       | 280                             | 200  |  |
|     | 33 012   | 80  | 18            | 25                | 46  | 7                | -                         | -                               | -    |  |
|     | 33 014   | 80  | 18            | 25                | 46  | 7                | 280                       | -                               | 54   |  |
| (3) | 32 7005  | 90  | 14            | 72                | 93  | 5                | 4800                      | 520                             | 273  |  |
|     | 32 5002  | 90  | 16            | 95                | 114 | 10               | 1580                      | 290                             | 140  |  |
|     | 32 7003  | 90  | 16            | 95                | 114 | 10               | 2350                      | 510                             | 140  |  |
|     | 33 009   | 105 | 30            | 29                | 34  | 7                | 1400                      | 250                             | 320  |  |
|     | 33 022   | 115 | 25            | 33                | 34  | 7                | -                         | -                               | 374  |  |
|     | 33 020   | 115 | 25            | 45                | 45  | 7                | -                         | -                               | 571  |  |

- (1) Mittelwert
- (2) Federkonstante ohne Anschläge
- (3) Zwei- oder mehrschichtige Ausführung
  Die technischen Daten sind nur Richtwerte.
  Die Liste wird laufend erweitert.

12

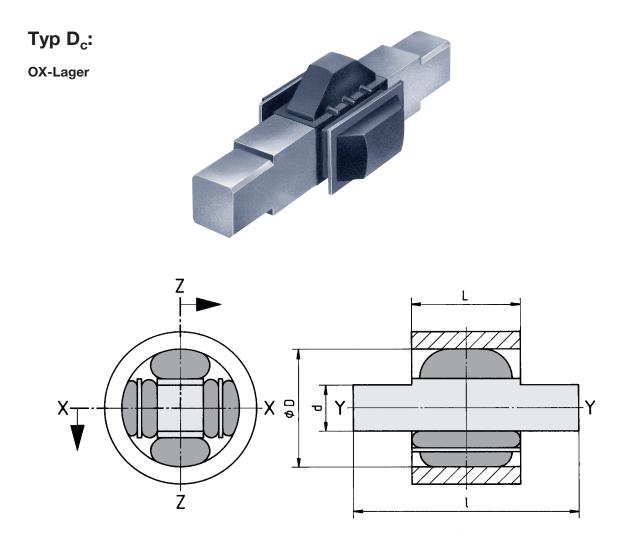


| Typ D <sub>a</sub> |     | A    | bmessunge<br>[mm] | en  | Federkonstanten<br>[N/mm] |                  |                                 |      |
|--------------------|-----|------|-------------------|-----|---------------------------|------------------|---------------------------------|------|
| Variante           | Ø D | d    | L                 | I   | C <sub>X-X</sub>          | C <sub>y-y</sub> | C <sub>z-z</sub> <sup>(2)</sup> |      |
| 33 5501            | 65  | Ø 20 | 94                | 72  | 0                         | 5500             | 530                             | 5500 |
| 33 6500            | 90  | Ø 16 | 103               | 80  | 3,5                       | 14000            | 800                             | 4600 |
| 33 7503            | 100 | □ 40 | 149               | 290 | 14                        | 10000            | 1100                            | 1800 |


<sup>(1)</sup> Mittelwert.

(2) Federkonstante ohne Anschläge.
Die technischen Daten sind nur Richtwerte.
Die Liste wird laufend erweitert.

Typ D<sub>b</sub>:


OX-Lager

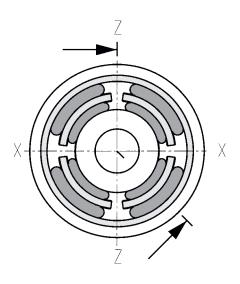


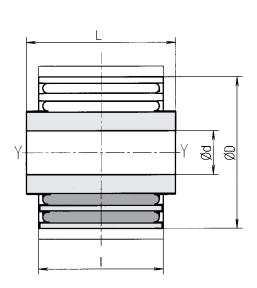


| Typ D <sub>b</sub> |                  |                                                                   | Abmess<br>[mn | -   | Federkonstanten<br>[N/mm] |    |                                 |                  |                  |
|--------------------|------------------|-------------------------------------------------------------------|---------------|-----|---------------------------|----|---------------------------------|------------------|------------------|
| Variante           | H <sup>(1)</sup> | $H^{(1)}$ $h^{(1)}$ $T^{(1)}$ $t^{(1)}$ $\varnothing A^{(1)}$ $L$ |               |     |                           |    | C <sub>x-x</sub> <sup>(2)</sup> | C <sub>y-y</sub> | C <sub>z-z</sub> |
| 33 7502            | 126              | 100                                                               | 126           | 100 | 15                        | 75 | 520                             | 300              | 2980             |

- (1) Die Anschlussmaße H, h, T, t und Ø A können anderen Einbauverhältnissen angepasst werden.
- (2) Federkonstante ohne Anschläge. Die technischen Daten sind nur Richtwerte. Die Liste wird laufend erweitert.




| Typ D <sub>c</sub> |     | Abmess<br>[mn |    | Federkonstanten<br>[N/mm] |                  |                  |
|--------------------|-----|---------------|----|---------------------------|------------------|------------------|
| Variante           | Ø D | d             | L  | C <sub>X-X</sub>          | C <sub>y-y</sub> | C <sub>z-z</sub> |
| 33 8500            | 90  | □ 40          | 95 | 32000                     | -                | 13000            |


Die technischen Daten sind nur Richtwerte. Die Liste wird laufend erweitert.

Typ D<sub>d</sub>:

OX-Lager

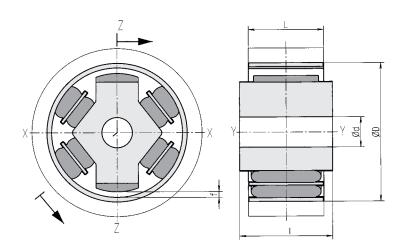






| Typ D <sub>d</sub> |     | Abmess<br>[mn |    | Federkonstanten<br>[N/mm] |                  |                                 |      |
|--------------------|-----|---------------|----|---------------------------|------------------|---------------------------------|------|
| Variante           | Ø D | d             | L  | C <sub>X-X</sub>          | C <sub>y-y</sub> | C <sub>z-z</sub> <sup>(1)</sup> |      |
| 33 3006            | 56  | 16            | 55 | 45                        | 4400             | 290                             | 5000 |
| 33 3003            | 68  | 17            | 34 | 34                        | 2300             | 75                              | 2670 |
| 33 3005            | 68  | 17            | 34 | 34                        | 2500             | 120                             | 4000 |

Federkonstante ohne Anschläge.
 Zwei- oder mehrschichtige Ausführungen.
 Die technischen Daten sind nur Richtwerte.
 Die Liste wird laufend erweitert.


16

Typ D<sub>e</sub>:

### **OX-Lager**

mit vertikalem Anschlag





Die Angaben in den Tabellen sollen Ihnen bei der Vorauslegung Ihrer Anwendung helfen. Sie basieren auf realen Teilen. Im Detail sind Anpassungen erforderlich. Die Teile können so nicht bestellt werden. Wir optimieren gerne für Sie.

| Typ D <sub>e</sub> |    | Abmess<br>[mr |     | Federkonstanten<br>[N/mm] |                  |                                 |      |
|--------------------|----|---------------|-----|---------------------------|------------------|---------------------------------|------|
| Variante           | ØD | d             | L   | C <sub>X-X</sub>          | C <sub>y-y</sub> | C <sub>z-z</sub> <sup>(1)</sup> |      |
| 33 8509            | 63 | 13            | 104 | 131                       | 2600             | 200                             | 1200 |
| 33 8502            | 63 | 16            | 40  | 36                        | -                | 1000                            | -    |
| 33 3004            | 75 | 16            | 60  | 70                        | 2400             | 340                             | 2150 |
| 33 8507            | 75 | 16            | 40  | 50                        | 1150             | 155                             | 1150 |

<sup>(1)</sup> Federkonstante ohne Anschläge.

Zwei- oder mehrschichtige Ausführungen.

Die technischen Daten sind nur Richtwerte.

Die Liste wird laufend erweitert.